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Abstract-The present study is concerned with the motion of a long cylindrical elastic bar which
is partially embedded in a homogeneous elastic half-space and subjected to a harmonic axial load.
Initially Green's functions corresponding to axisymmetric harmonic ring loads are derived and
presented explicitly. It is found that the direct extension of elastostatic solution schemes to solve
elastodynamic problems may lead to erroneous solutions due to the inability of these algorithms
to properly account for inertia effects. Some discrepancies in existing solutions with respect to the
inertia component of the bar are shown. An efficient solution scheme, based on Lagrange's equation
of motion and a discretization technique, is presented to solve the title problem. Numerical results
are presented to illustrate the influence of bar flexibility, mass density, geometry, and frequency of
excitation on the axial impedance of the system.

INTRODUCTION

The study of finite cylindrical elastic inclusions which are partially embedded in an elastic
half-space and subjected to a symmetric harmonic axial load (Fig. I), has great importance
in several branches of engineering. The fundamental work in this area is due to Muki and
Stemberg[I], who considered the diffusion of a static axial load from an infinitely long
circular elastic bar into the surrounding infinite elastic medium. This exact analytical study
provided the basis for a later study by Muki and Sternberg[2], where an analytical
formulation based on one-dimensional continuum for the bar was presented to investigate
the elastostatic axial load transfer from a long cylindrical elastic bar into the surrounding
elastic half-space.

Keer and Freeman[3] considered the transfer of a static torque from an infinite
cylindrical bar into the surrounding half-space. Niumpradit and Karasudhi[4] and
Karasudhi et al.[S,6] have extended the scheme of Ref. [2] to quasi-static axial load
transfer, torque transfer problems, and also to investigate the effect of a modified
compatibility condition. It is considered that an exact analytical formulation of the problem
of a finite elastic bar involves several fundamental difficulties. However, elegant analytical
formulations based on coupled singular integral equations exist for elastostatic axisymmetric
problems of a finite rigid bar. These are due to Luk and Keer[7,8] and Luco[9].

In addition to the above studies based on integral equation techniques, an efficient
semi-analytical method based on a discretization procedure has been used to solve many
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Fig. 1. Geometry of bar and embedding medium.
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elastostatic load transfer problems. In this method, a homogeneous half-space subjected
to unknown tractions along a fictitious contact surface is considered. The intensities of
these tractions are determined by enforcing an appropriate unit rigid body displacement
mode at discrete locations of the fictitious contact surface. Poulos and Davis[IO], and
Suriyamongkol et ai.[ll] studied the behaviour of axially loaded rigid cylinders using this
method. Extensions of this method to elastic cylindrical bars are due to Butterfield and
Bannerjee[12] and Poulos and Davis[13]. Recently, Selvadurai and Rajapakse[14]
presented an extensive study on the discretization method and compared the solutions
with those obtained through integral equation methods.

At present, studies on the dynamics of a finite cylinder embedded in an elastic half
space are rather limited. Some early attempts[15, 16] to solve the dynamic problem were
based on the approximation where the surrounding medium above the base of the cylinder
is treated as a system of independent elastic layers of infinitesimal thickness. A notable
advancement is the study by Apsel[17], where a boundary integral equation based on the
integral representation theorem[18, 19] is established to evaluate the impedance matrix of
a rigid cylindrical inclusion embedded in a layered half-space. The existing solutions to
the axial vibration of an elastic bar embedded in a homogeneous half-space is due to
Fowler and Sinclair[20], who extended the scheme of Ref. [2] to the elastodynamic
problem, and by Sen et ai.[2l], where an extension of the discretization technique[10-14]
is proposed to solve the dynamic problem.

It is shown that the extension of elastostatic load transfer algorithms to the
corresponding elastodynamic problems as proposed in Refs [20,21] may lead to a solution
containing a considerable error. This is due to the inability of these algorithms to
properly account for the longitudinal inertia component of the bar-half-space system. The
significance of the inertia of the volume in the half-space corresponding to the elastic bar
is discussed in particular detail. In addition, it is found that the use of real bar density in
the solution scheme as adopted in Refs [20,21] instead of that corresponding to a fictitious
bar defined as in Ref. [2] may further distort the numerical solution.

An accurate discretization procedure is suggested for the rigid bar problem through
the generalization of the load transfer model of Ref. [2]. Thereafter, an efficient solution
scheme based on Lagrange's equation of motion, together with the new discretization
procedure, is presented to solve the title problem. Numerical results are presented to
illustrate the convergence characteristics of the present scheme and the influence of bar
flexibility, geometry (h/a ratio), mass density, and frequency of excitation on the axial
impedance of the system.

FUNDAMENTAL SOLUTIONS

Consider a half-space region as shown in Fig. 2(a) in which (r, e, z) is the cylindrical
polar coordinate system, and the related rectangular Cartesian coordinate system (x, Y, z)
is such that the z-axis is normal to the free surface. It is understood that we consider
harmonic vibrations, and the term ei

...
1 (w is the circular frequency) is suppressed in all

expressions. For an isotropic linear elastic medium undergoing torsion free axisymmetric
deformations the displacements can be expressed in terms of two scalar potentials, t/; and
l/!, as

o<p 02l/!
u=-+--or oroz

w = ot/; _ !!(r°l/!)oz r or or

(la)

(lb)

where u and ware the displacements in the r- and z-directions.
In view of the representation given by eqns (la) and (l b), the equilibrium equations
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Fig. 2. Concentrated harmonic loads acting in the interior of the half-space.

for the elastic medium in the absence of body forces are satisfied provided that t/J and '"
are the solutions to the following scalar wave equations

(2a)

(2b)

where k; == (JJ2p/()' + 2J.l) and k; == (JJ2p/J.l are the pressure and shear wave numbers,
respectively; ). and J.l are Lame's constants; p the density of the medium; and V2 is the
axisymmetric Laplacian operator. The application of Hankel integral transforms[22] of
zero-order to eqns (2a) and (2b) yields the following general solutions:

(3a)

(3b)

(3c)

where A(~), B(e), qe) and D(~) are arbitrary functions to be determined by invoking
appropriate boundary and/or continuity conditions. In view of eqns (3a) and (3b), the
expressions for relevant displacements and stresses are found to be



270 R. K. N. D. RAJAPAKSE and A. H. SHAH

o 8'0

,~,.r~-IJ-r-:J-":::':";::-t_. r,'

---llll/2 lJ

Shaft element I

~ .
l.Irl~-----i

j BQ$e element

l
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(4d)

Before proceeding to further analysis, it is convenient to nondimensionalize the
problem by defining a length parameter "a", which denotes the radius of the embedded
bar. Consider the problem of a homogeneous half-space (Fig. 2(a» subjected to concentrated
circular ring loads of unit intensity acting in the vertical and radial directions, as shown
in Figs 2(b) and (c). These loads are assumed to act along the circumference of a circle,
with radius equal to s at the interior of the half-space at z = z'. Once the displacement
solutions corresponding to these loading configurations are derived, those required in the
solution schemes of Refs [2, 10-14, 20, 21] could be obtained by integrating these solutions
in radial or vertical directions.

Note that by taking the appropriate limit on s, the dynamic counterpart of
Mindlin's solution[23] could be easily obtained from these solutions. Therefore, solutions
corresponding to loading configurations shown in Figs 2(b) and (c) are of fundamental
importance, and at present these do not appear explicitly in available literature. These
solutions could be derived by considering two-domain problems as suggested in Refs
[11,14] for the elastostatic case. The appropriate boundary, continuity and regularity
conditions and Hankel transform representation of stress jumps at z = z' remains identical
to those corresponding to the elastostatic problem as given in Refs [11,14]. For brevity,
these are not reproduced here. The solution of the appropriate boundary value problem
yields the expressions for displacements as given by eqns (Al)-(A4) in the appendix.

In applying the discretization technique[1O-14] to solve embedded cylindrical
inclusions, solutions corresponding to uniformly distributed tractions of unit intensity
acting on shaft and base elements shown in Fig. 3 are required. These solutions could be
developed by integrating the solution given by eqns (A1)-(A4) across the thickness of the
shaft and base elements. The expression for displacement in the k-direction (k = r, z) at
point P~rl> Zi) due to tractions in the I-direction (I = r, z) acting on elementj with coordinates
(ri'z) (see Fig. 3) is denoted byfkl (ri'z,; rj,zj)' The explicit representation ofjkl(r"zj; rJ':)
for shaft and base elements are given hy eqns (A13)-(A20) in the appendix.

ELASTIC CYLINDRIO L BAR EMBEDDED IN HALF·SPACE

Figure 1 shows a cylindrical elastic bar of radius a and length h (hla » 1) partially
embedded in a surrounding elastic half-space. A cylindrical coordinate system (r, e, =) is
defined such that the z-axis coincides with the longitudinal centroidal axis of the cylinder
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and is normal to the stress-free surface of the half-space. The material properties of the
bar, which is assumed to behave as a one-dimensional elastic continuum, are characterized
by its Young's modulus Eb and mass density Pb' The surrounding half-space is characterized
by its Young's modulus, Poisson's ratio, and mass density, denoted by E, v, and P,
respectively. It is assumed that the bar is continuously bonded to the surrounding half
space along the shaft of the bar (r = a, 0 ::s;; (J ::s;; 2n, 0 ::s;; Z ::s;; h), and along the base of the
bar (z = h, 0 ::s;; r ::s;; a). The bar-half-space system is subjected to a symmetric harmonic
axial load equivalent to Po e1o

)/ at the top end of the bar at Z = O. It is assumed that the
frequency of excitation is sufficiently low and h/a » 1, so that the use of a one-dimensional
continuum model based on first-order theory is justified for the case of an elastic bar.

Before we present an accurate solution scheme for the title problem, attention is
focused on solution schemes of Refs [20,21]. In what follows, the discretization technique
employed in Ref. [21] is briefly discussed through the consideration of a rigid bar problem.

In applying the discretization technique, a homogeneous half-space (without any
inclusion) subjected to an unknown traction distribution along a fictitious contact surface
S*, as shown in Fig. 4, is considered. The intensities of these tractions are determined by
discretizing the surface S* using the shaft and base elements shown in Fig. 3, and
establishing a flexibility equation for discrete points on S* so as to satisfy the appropriate
rigid body displacement mode. In doing so, the following simultaneous equation system
is obtained

M

L [f:Z(ri,Zi;rj,Zj)~j + r'(ri,Zj;rj,zj)T,j] = ~o
j=l

(Sa)

M

L [f'%(ri,Zi;rj,Zj)~j + j"(ri,zj;rj,zj)T,j] = 0
j=l

(i = 1, ... ,M). (5b)

In eqns (Sa) and (5b), M is the total number of elements used to model surface S*, ~o is
the specified vertical displacement along S*, and jtl are given by eqns (A13)-(A20).
Intensities of radial and vertical tractions acting on the jth element are denoted by T,j and
~j' Solution of eqns (Sa) and (5b) with ~o = 1 yields the numerical values for T,j and ~j'

It should be realized that in order to obtain a proper solution corresponding to a
rigid cylinder from tractions ~j resulting from eqns (Sa) and (5b), due consideration must
be given to the resultant longitudinal inertia force of V*. The following relationship could
be established between the magnitude of the harmonic axial force Po corresponding to a

massless rigid cylinder, traction resultant R% (= f ~j dA j' where dA j is the surface area
j=l

of the jth element) and inertia component 1%(= I. pw2 WdV) of V*

(6)

Figure 5 presents a comparison of non-dimensional axial impedance K~ (=P0/p.a40 )
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Fig. 5. Comparison of vertical impedance (K~) of a massless rigid cylinder embedded in a half
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Fig. 6. Vertical displacement profiles at various z-values of domain V· due to tractions applied
on S* (hla = 2.0, v = 0.25, M = 24 in eqns (Sa) and (5b».

of a massless rigid cylinder obtained using eqns (5) and (6) with those due to Apsel[l7].
The traction resultant Rz is also nondimensionalized as 1{. (... Rz/JlAAo) and plotted in Fig.
5, The displacement profiles of v* (on the basis of which I. is computed) due to tractions
'T:} obtained from eqns (Sa) and (5b) is presented in Fig, 6, It should be mentioned here
that for ao > 1.0. where ao "" ak&. accurate computation oU" is encountered with numerical
problems and the solution scheme fails with increasing ao.
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In Ref. [21] for the case of a long elastic bar, neglecting radial tractions T,j on S*,
eqns (Sa) and (5b) were reduced to the form

M

L f%%(ri,Zi;rj,Zj)~j = w,{ri,Zj)
j=l

and the following governing equation was considered for the bar

(7a)

(7b)

Obviously, a solution based on eqns (7a) and (7b) does not properly take into account
the inertia component of V*. In addition, the use of Eb and Pb in eqn (7b) does not represent
the proper decomposition of the bar-half-space system. Since eqn (7a) is valid only for an
extended half-space where the domain of the elastic bar is filled with a material identical
to the surrounding half-space, it is essential to consider a fictitious bar as defined by Muki
and Sternberg[2]. Therefore, in eqn (7b), Eb and Pb should be replaced by E* and p*
defined as

E* = Eb - E > 0

p* = Pb - P ~ O.

(8a)

(8b)

For elastostatic problems in geomechanics, usually E = EJE > 50, hence solutions
corresponding to Eb and E* would be nearly identical. However, in all practical situations,
p* ::f: Pb' and, as will be shown later, for elastodynamic problems, solutions would differ
considerably when 00 > 0.25.

It should be mentioned here that even a solution based on eqns (7a) and (7b) with E*
and p* may not represent a proper solution to the title problem. This is due to the fact
that as 00 increases, displacements within V* would differ from those along s* and the
determination of 1% on the basis of displacements along S* may be inaccurate. In a
subsequent section, this fact is verified through some representative numerical results. It
is noted that the solution scheme of Ref. [20] also does not account for the longitudinal
inertia component of V*, and the decomposition of the problem on the basis of eqn (7b)
would further distort the solution.

An accurate solution for the title problem should properly account for inertial forces
of V* and should take into account a fictitious bar with properly modified material
parameters. In addition, the solution for an elastic bar with mass density Pb as Eb -+ 00
should yield the correct solution corresponding to a rigid bar of mass density Pb'

In order to develop an accurate solution scheme for the title problem, we focus our
attention to the elastostatic load transfer model of Muki and Sternberg[2]. In the analysis
presented in Ref. [2], an elastic half-space containing an embedded elastic bar is decomposed
into an extended half-space and a fictitious bar. Initially, we apply the restriction that the
bar is rigid; therefore, consideration is given only to the extended half-space as shown in
Fig. 7. In order to account for the case of a short bar, it is assumed that v* is subjected
to body forces (B" B%), and concentrated load transfer represented by tractions T" Tz acting
on the terminal cross-sections at Z =0, h. To ensure that volume v* deforms as a rigid
body, it is assumed that the magnitude of body forces varies in both the r- and z-directions,
and that the tractions vary in the r-direction.

The magnitude of body forces and tractions are determined by discretizing v* and
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Fig. 7. Extended half-space subjected to end tractions and a body force field

terminal cross-sections using toroidal and base elements as shown in Figs 8 and 3.
respectively, and establishing the following flexibility and equilibrium equations

Atl
L [rZ(ri, Zi; rj' Zj)Bzj + ':'(r" Zj; rj, Zj)Brj]
j-t

Ml

+ L [rZ(r" Zj; rj , zlT:j + r'(r,. Z,; rj ,Zj)T,;J - !.10 ::: 0 (9a)
j= 1

Ml

L [pZ(rj,Zj;rj,zj)BZj +1"(rj,z,;rj.zj)B,j]
j= I

All

+ L [!'Z(r"Zj;rj,Zj)T.j + r'(r;'Zi;rj,z)T.J]::: 0 (9b)
j= I

M, Ml

L Bzj 21trj!.1zj!.1r j + L T:. j21trj !.1rj + (p - pl»1talwlh~o ::: Po· (9c)
J=1 j=1

In eqns (9a)-(9c). M 1 is the number of toroidal elements used to model V*, M 2 is the
number of base elements. In, 1'z, ft', J" are obtained by integrating eqns (A1HA4) over
the area of a toroidal element. BZl and B,j represent the magnitude of body forces acting
on the jth toroidal element, T. j and Y,j are the magnitude of tractions acting on the jth
base element.

Solutions of eqns (9a)-(9c) results in Bzj , Brj • Trj, Trj • and Ao for a given Po. In order
to compare solutions with Apsel(17], eqns (9a)-(9c) are solved with PI> = 0 and Po = 1.
The axial impedance K~(= Po/~a/io) so obtained is plotted in Fig, 5. It is evident that this
model could be used effectively to determine the impedance of a rigid cylinder. In solving
eqns (9a)-(9c), it is found that better numerical convergence and efficiency is achieved by
placing the displacement compatibility points (rj , Zj) along the outer edge of an element.
Note that solution of eqns (9a)-(9c) with P = Ph would eliminate the inertia term in eqn
(9c). Therefore. solution of eqns (9a) and (9b) for a given Ao could be considered as the
solution corresponding to a bar with density identical to the surrounding half-space. With
this observation. we focus our attention to the title problem and present an accurate

A"'-----r----- .. 8 =0

toroidal element

Fig. 8. Geometry of toroidal element.



On the longitudinal harmonic motion of an elasllc bar embedded In an elastic half-space 275

solution scheme which is based on Lagrange's equations of motion and a simplified version
of eqns (9a)-(9c).

In the case of the system shown in Fig. 1, a fictitious bar with material properties as
defined in eqns (8a) and (8b) has to be considered in addition to the extended half-space.
The deformation of the fictitious bar (identical to that of a real bar), which is assumed to
behave as a one-dimensional elastic continuum, is approximated in the following form:

N

w(z,t) = L an(t)e-(n-l):/h
n=1

N

W(z,t) = L Qn(t)e- tn - 1):/h

n=1

(lOa)

(lOb)

where al'" .,aN can be viewed as generalized coordinates. From eqns (lOa) and (lOb) the
strain and kinetic energies Va and T" of the fictitious bar can be expressed as

where

N N

Va = L L D",naman
m= 1 n= 1

N N
T" = L L C"",Q",Qn

,,,=In=l

n:E*az(n - l)(m - 1)(1 - e-tm+n-Zl)
D = ,

"'" 2(m + n - 2)h

=0,

m+n#2

m+n=2

(l1)

(12)

(13)

n:p*haz(l - e- tm +n- Z,)

Cmn = 2(m + n - 2) ,

n:p*ha2

=--2-'

m+n#2

m+n==2 (14)

and the superscript dot denotes differentiation with respect to time.
In the case of a long elastic bar, it is reasonable to neglect body force and traction in

the ,-direction. Consider the extended half-space, which is subjected to an unknown body
force distribution (B:) in V*, and vertical traction ('f:) on circular areas at z =0 and h
which produce the same displacement distribution as eqn (lOa) in V*. Since the body force,
B:, and the traction 'f:, cannot be obtained analytically, a numerical solution is sought
using the proposed discretization technique. By discretizing the volume V· using toroidal
elements and the terminal cross-sections by using base elements, we establish the following
flexibility equation:

where

[ l' 2] [B:J [1' 2 ..A ij : Au -f:- = W : W :: (l5)

BAS 23:2-£

(l6a)

(16b)

(17)
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B~]

T~]

(18a)

(18b)

(18c)

(18d)

and M = M 1 + M 2'

In eqns (15)-(18), M 1 is the number of toroidal elements used to model V·, M 2 is the
number of base elements, r z is given by eqn (A 17), and r z is as defined in eqns (9a)-(9c).
The intensity of the body force acting on the jth toroidal element is denoted by B=j and
r:j is the intensity of the vertical traction on the jth base element. {w"} consists of vertical
displacements corresponding to the nth term of eqn (lOa) when aft = 1. The solution of
eqn (15) yields the elements of matrices [BzJ and ['T:J. The body force BZi and traction 'T:J
corresponding to the displacement given by eqn (lOa) can be written as

N

Bzi = L an~i
n=1

N

'T:j = L anT=i
11=1

(19)

(20)

Let us consider the strain and kinetic energies of the extended half-space. Introducing
standard indicial notation and using the identity

the Lagrangian[24] for the extended half-space can be written as

In eqn (22) V denotes the volume of the extended half-space and SI and S2 are the area
of terminal cross-sections at z =0 and h, respectively, in the extended half·space. Note
that displacement, velocity, tractions and body forces in V can be expressed in terms of
the generalized coordinates.

The application of Lagrange's equation of motion[24) to the total system, composed
of an extended half-space and a fictitious bar, together with eqns (10)-(22) results in the
following algebraic equations of motion for aft's

(23a)

(i=1,2, ... ,n)

where

(23b)

In developing eqn (23a), the integrals in eqn (22) were numerically evaluated utilizing
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Table 1. Dependence of K, on the number of
toroidal elements (M d and base elements (M2):

h/a = to.O, ao = 1.0, P = 1.0, v =0.25. N = 8

K • P I"a~v 0 c

(MI. }i2) I l . 100 E• ~oo

(20, 4) (17.10,60.25) (" .14, of, .10)

("0, ") (17.74.60.75) (".39, 69.03)

(6(;, ~) (17.; •• 6/.02) (4."~, 6j/.61)

(80, 8) (17.92. 61.9U) (".50, 70.10)

toroidal and base elements. Note that the manipulation involved in deriving eqn (23a) is
identical to that in a finite element formulation of an elastodynamic problem[25]. After
solving eqn (23a), the vertical displacement at the top end of the bar is obtained from

(24)

As an alternative to the function bases given by eqn (lOa), a polynomial variation of
the following form could be used to approximate the vertical displacement of the bar

N
w(z,t) = L. a,,(tXz/h)"-1.

,,= 1
(25)

With the above representation, the equations of motion of the system remain identical
to eqn (23a) except that Po on the right-hand side of eqn (23a) is replaced by POll 1i> where
lIij is Kronecker's delta function, and quantities C"i' D"il E"j and Eij are defined as

(26a)

D _ na2E*(n - lXi - 1)
"I - 2h(n + i - 3)

=0

forn + i:F 3

forn + i = 3 (26b)

(26c)

A comparison on the performance of both exponential and polynomial approximations
is presented in the subsequent section.

DISCUSSION AND CONCLUSIONS

A numerical study is performed initially by varying the number of elements (Ml' M2)
used to model v* and the number of terms (N) used in displacement approximations given
by eqns (lOa) and (25) to determine the convergence of the proposed solution scheme.
Table 1 presents a study on the dependence of a number of toroidal elements (M1) and
base elements (M2) on the axial impedance Ky(Ky = Po/paAo) of the bar-half-space system
[h/a = to.O, P== 1(p = pJp), ao = 1.0 (ao == ak,), v =0.25, N == 8] for a flexibility ratio
£ = 100 and 500, where £ = EJE. It is noted that solutions are converging and the
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Table 2. Companson of convergence of K, obtamed from dIfferent dIsplacement
functions. hla = 10.0, E = 10.0, Ii = 1.0, ,. = 0.25, M I = 80. M2 = 8

!' \' '" r 0 .. a:.. o

\ ~ ~ , f.,: • 1e. 12) \12.1"' •• ,"->,.1.."

( 110 ()4, 16 .t>': J (I b. (jl. 16. ((" I

i
\ ~ b. U.... lb.62) Ub.L ... ;C, e,., I
(16.01. • lb. b.) (16.0.. , 16. t :-:

( ~ tl . (I .. , 16. 6i) ( • b. U... , 1, t

':". 8~ , 33 l\}) (24.82, 33.1G\

,.4 ~v • ~,i0) ( 1c.,. 12. II .:;)

4
I (1~,4~. e. 4":) 11 ... ,':'), 8.51 )

! t I { l4. j5. 10.-0] (l_ 35, 8.;' 1)

I
10 I ( 1".35, f.~O) (14. }5, 0.1.0:,I

[
U .... 35. 10.40) \ ~ .. 10 ...0)I'" i -'-.

,

il
I f-I--------
I '. !r-- -:o ',,-'_"rU_4~ ao • : l

Exrn;- e n t 1;1_:_:--_P<_l_)_"0_"'_'''_1__-+-_"_f_co_.e_nt_'_<11~I~jynoo,. 0~
~ U.S:, 7::.b~j I (O s~> t ,1

algorithm is stable for varying M 1 and M2' In view of high computational cost, it is
reasonable to use M 1 = 40 and M2 = 4 for a bar with hla = 10.0, Table 2 presents a
comparison of axial impedance of an elastic bar-half-space system [hla = 10.0, E = 10,0,
P= 1, v = 0.25, M t = 80, M2 = 8] obtained by using different N values for both exponential
and polynomial type displacement approximations for the bar. It is evident that both
function bases converge rapidly in the non-dimensionalized frequency range ao = 0-1.0
and a stable solution could be obtained by using only six terms (N = 6),

Table 3 presents a comparison of the axial impedance of an elastic bar-half-space
system obtained on the basis of both exponential and polynomial approximations for
different values of E at ao = 0.4 and 1.0. Both function bases yield solutions which agree
very closely. These studies confirm the overall convergence and validity of the present
solution scheme for different problem configurations. In all numerical solutions, volume
V· and terminal cross-sections are subdivided using equal spacing in a particular direction.
It should be mentioned here that the axial impedance obtained by neglecting tractions on
terminal cross-sections (i.e. T.J =0 at z =0, h and solving eqn (15) only for Bzj) hardly
shows any difference,

Figures 9-11 illustrate the influence of flexibility ratio E and non-dimensionalized
frequency parameter ao on the axial impedance of an elastic bar-half-space system for
hla = 5, 10 and 15, respectively. It appears from these figures that within a certain range
of E, the real part of axial impedance shows an increase with increasing ao. As E increases
beyond this range, the real part of axial impedance decreases rapidly with increasing ao
reflecting a behaviour similar to that of a rigid bar of mass density Pb embedded in a half
space, Note that as the bar becomes rigid, the inertia components dominate and the
solution shows a great dependence on the frequency of excitation. The imaginary part of
the axial impedance in the range ao = 0-1.0 shows nearly linear dependence on ao for all
values of E (flexible as well as rigid). In Figs 9-11, axial impedance of a rigid bar (E = !Xi)

obtained by using eqns (9a) and (9b) with Brj , T,.j = 0 is also plotted. It can easily be seen
that the results obtained from the variational solution scheme presented for an elastic bar
approach the curves corresponding to E = !Xi as the value of E is increased.

Table 3. Companson of K, obtamed from exponential and polynomial function
bases for different E, hla = 10.0, P= I ,0, ~' = 0.25, N = 6, M J = 80, M 2 = 8

r I K • P I ea4i L--- ...;v__0:o,-_' --1

I f I a • 0.1.0 a • 1 _0 '
, t--' ~G_-,-- +- -"-o_-,-- ---j
I. Expcoertlal Pol) r.otll" 1 Exponeoual [ pOl,no.aal!

I 10 (14.J5, 8.1.0) (11..35. 8.1.0) (lb.OI., 16.62) I (16.0,. 10.62):

I
5°1' (23.16,21.3:) (23.",21.29) (25.82,1.9.1_: I (25.61,4 9 . 15 ):

I i00 (L4.06, 25.60) (2_.07,25.60) (17.92, 61.%) (17.~", 01.90)1

i 500 1 ,21..;'1. 31.61) (21..92, 31.011) ( •. 50. 70.10) ( 4,51. ;0.11)1

11Cooi (24.3., ~~.01) (i-.33,32.80) '. ~.bl. 71.0') '2.61, :'~J)\
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Fig. 9. Variation of vertical impedance, K" of a cylindrical elastic bar for various E(h/a =5.0,
v =0.25, (> = 1.0, M1 =20, M2 =4).

Figure 12 illustrates the influence of mass density ratio jJ(p = pJp) on the axial
impedance of an elastic bar (h/a = to.O, E = 100.0) in the frequency range ao = 0-1.0.
These results show that the axial impedance has marked dependence on the mass density
ratio jJ of the elastic bar-half-space system when ao > 0.25. Figure 12 can be used to show
the effect of using Ph instead of p* in the solution as considered in Refs [20, 21]. Consider
a bar where Ph = p, then jJ = 1 and p* =O. The appropriate solution is given by the curve
corresponding to jJ = 1 in Fig. 12. If we use Ph in eqn (7b) as suggested in Refs [20,21]
which is equivalent to considering a fictitious bar with p* = Pb' then the solution obtained
would be identical to that in Fig. 12 corresponding to jJ = 2. The differences between
impedances given by curves corresponding to jJ = 1 and 2 could be easily seen in Fig. 12.
Furthermore, the use of Ph instead of p* would never make the solution approach the
correct limit of a rigid bar with a mass density Pb as E -+ 00.

At this stage, attention is focused on the load transfer model which is based on
tractions applied only on fictitious contact surface S*. If we solve the elastic bar problem
by applying the variational scheme and taking the modified value for mass density (P*), then
the following equations of motion are obtained to determine a"

f a,,[-2W2C"1 + 2D"1 + 1t f rJT~JE"j + T';JEIj) AtJ] = Po
,,= 1 j= 1

(i = 1, .. . ,N). (27)

In eqn (27), M is the total number of shaft and base elements used to model S* and Atj
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Fig. 10. Vanation of vertical Impedance, K .. of a cylindncal elastic bar for various £(h/a = 10.0.
v = 0.25, P '" 1.0, M I = 40. M 2 = 4).

denotes aZj or Arj . In eqn (27) T~j is obtained by solving the following flexibility equation
established for surface S·

(n = 1, ... ,N). (28)

The elements of [F] are given by eqns (A13) anq (A17).
For the purposes of identification, solutions obtained from eqn (23a) are referred to

as Scheme 1 solutions and those from eqn (27) as Scheme 2 solutions. Table 4 presents a
comparison ofaxial impedance obtained from Schemes 1and 2 for an elastic bar (hla = 10.0,
P= 1.0, v = 0.25) for different £ and ao values. For ao =0.4, the solutions agree very
closely, and increasing differences are observed as ao increases. Especially for Qo = 1.5, the
solutions obtained from Schemes 1 and 2 show very large differences. The reason for the
failure of solutions obtained from eqn (27) is that as ao increases, it is incorrect to assume
that displacement in V· due to tractions on S· is uniform within 0 ~ r ~ a (see also Fig.
6). The inability of the algorithm to properly account for inertia of y* or to impose uniform
displacement within 0 ~ r ~ a leads to distorted solutions.

The present formulation could also be used to determine the applicability of a load
transfer model where it is assumed that the body force in Y· and tractions in the terminal
cross-sections are distributed uniformly in the radial direction. In this case, eqn (23a) is
solved with a single toroidal element in the r-direction. Since vertical displacement is not
uniform in the radial direction within V*, compatibility between the extended half-space
and the fictitious bar can be imposed on any location in V* with 0 ~ r ~ a. Table 5



On the longitudinal harmonic motion of an elastic bar embedded in an elastic half-space 281

-10
0 0.2 0.4 0.6 0.8 1.0

120

E= 10 -<>-
=25~
= 50 -<>-
=IOO~

=ICX)Q ....&-
=00 -0-

E.....
46

24

0.2 0.4 0.8 10

°0
Fig. 11. Variation of axial impedance. Ky. of a cylindrical elastic bar for various E (h/a ... 15.

II "" 0.25. P"" 1.0. M1 == 60, M 2 "" 6).

presents axial impedance of a bar-elastic half-space system (hla ... 10.0, v =0.25, P= 1.0)
obtained using this model with displacement compatibility imposed in V* at r = 0 (along
z-axis) and r =: a (along the fictitious contact surface S*). It is observed that solutions
based on compatibility along S* (i.e. r =a) agree very closely with the non-uniform body
force model when ao is sufficiently small, preferably ao ~ 0.5. Solutions based on
displacement compatibility along the z-axis are found to deviate considerably, even at low
frequencies.

Based on the above comprehensive investigation, the following conclusions could be
made.

(a) The present solution scheme, based on Lagrange's equation of motion and the
discretization technique, solves the title problem over a wide range of frequencies.

(b) The use of real bar density (Pb) in the solution procedure instead of that
corresponding to the fictitious bar (P* =: Pb - p) is shown to produce a considerable error
on the axial impedance of the system when ao > 0.25.

(c) The solution algorithm such as those based on tractions and displacement
compatibility along the fictitious contact surface S* or the uniform body force model with
displacement compatibility along S* could be considered as accurate and numerically
efficient if ao ~ 0.5. In these solutions, it is essential to use a fictitious bar with material
properties as defined in eqns (8a) and (8b).

(d) As for limitations of the present schemes, hla » 1 and the frequency of excitation
should be such that the one-dimensional behaviour of the bar is justifiable and the
displacement of the bar could be approximated by eqns (10) or eqn (25) with a reasonable
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Table 4. Comparison of K. obtamed from Schemes I and 2: h/a = 10, {J = 1, v = 0.25, M 1 = 80 and
M 2 = 8 for Scheme I, M = 24 for Scheme 2

K • P I",,~ :v 0 0 -I
E a • 0.4 a • I.U a . 1.5

0 0 0

Scheme J ~chcme 2 Schem£' 1 Scheme 2 ::>cheme J Scheme 2

10 (14.35, 8.40) (14.01, 7.94 ) (16.04, J6.62) (14.68, 10.72 ) ( 15.01, 24.06) I ( 10.78, 28.79 )
I

50 (23. 16, 21. 31) (2i.60, 20.40 ) l ~5. ~2, 49.14 ) (23.15, 50.34 ) ( 35.39, 74.21 ) i ( ]5.37, 89.20)

IOU (24.00, 25.00) (23.96, L5.43) (17.92, 61. 90) (14.01, 63.55) ( 13.04, JU4.42) I -6.56, 131.80)

1000 (24.31, 32.81 ) (24.42, 31. 90) ( 2.61, 71. 31) (-3. II , 70.81 ) (-34.91, 107.2 ) 1-68.90, 107.30)
,

number of terms. For the case of a rigid or nearly rigid bar, the discretization scheme is
applicable over a wide range of frequencies. However, the solution may be considerably
expensive if ao > 1.5.

A natural extension of the present scheme is to study the lateral vibrations of an
elastic bar embedded in a half-space and subjected to a harmonic lateral load and a
moment. A companion paper presents a comprehensive study on this problem.
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Table 5. Comparison of K. obtained using uniform and non-uniform body force model: hla = 10.0,
{J = 1.0, v =0.25, MI = 20, M2 = 2 (uniform body force model), MI = 80. M2 = 8 (non-uniform body

force model)

K • P '"a~v 0 0

a ·0.4 a • 1.0
i 0 0

Un1. body f oree Un!. body force Non-un1 farm Uni. body force Un1. body force Non"'un1form
D1spl. co..p. D.lspl. compo body force ~1spl. Compo Displ. Comp. body force
along z-axis along 5* model along z-axis along S* lIlOdel

10 (l2.~7. ~,78) 03.99, 7.97) (14.3~. 8.40) (13.90, 10.~4) 03,67, 1~.~~) (16.04, 16.62)

~o (20.46, 14,33) (22.44, 20.12) (23.16, 21.31) (21.50, 28.79) (20.16, 45.94) (25.82, 49.14)

100 (22.07, 17.38) (23.81, 2~.Ol) (24.06. 2~.60) (20.20, 3~.20) (12.19, 56.69) (17.92, 61. 90)

1000 (23.49, 21.20) (24.30, 31.40) (24.31, 32.81) (16.47, 41.68) (-1.80, 62.54) (2.61, 71.31)
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APPENDIX

The following are expressions for displacements corresponding to concentrated ring forces shown in Fig. 2.
Concentrated vertical ring force (Fig. 2(b})

w(r, z;s, z') =1<OIIR\('}F.(',Z,z')s,Jo(,r)Jo(,s)d, (AI)

u(r,z;s,z'} =rIII/R\(,)Fz",z,z,)s,2J\"r)Jo"s)d'. (A2)
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and
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Concentrated radial ring force (Fig. 2(c))

w(r,z;s,z') = L'" expR ,(<:)F3(<:'Z, z')s<:'Jo(<:r)J.(<:s) d<: (A3)

I/(r,z;s,z') = f'PR1(<:)F.(<:,Z.Z')s<:J.(<:r)JI(<:S)d<:. (A4)

The functions F,. F" F3• F., and R I appearing in eqns (AI)-(A4) are defined as

F.(<:,z,z') = 4cxP(2<:, - 1c;)(Q. + Q2) + R(.;)(.;2Q3 - exPQ.) - R(';)(exPQ, + .;2Q6) (A5)

F2(';,z.z') = 4(2<:' - k;)(.;2Q2 + exPQI) - R(';)(Q, + Q6) - .5R(';)(Q. - Q3) (A6)

F3(';,%,z') = 4(2';2 - k;)(.;2QI + exPQ2) - R(';)(Q, + Q6) - e5R(';)(Q. - Q3) (A7)

F.(';,z,z') =4cxP<:'(2.;2 - k;)(QI + Ql) + R(.;)(.;2Q. - ex1JQ3) - R(.;)(.;2Q, + ex1JQ6) (AS)

R I (.;) = 21lk;:IJR(';) (A9a)

R(.;) = (2';2 - k;)2 - 4cx1J.;2

R(.;) = (2e - k;)2 + 4cxIJe

Q. =e-"'-"I
Q.5 = e-tI(l+")

.5=-1 ifz<z'

I ifz > z'.

(A9b)

(AIO)

(All)

(AI2)

Note ex2 = ';2 - k~, 1J2 = ';2 - k;, and R(';) = 0 is Rayleigh's equation. The branches of ex and IJ are taken such
that both real and imaginary pans of ex and IJ are positive along the contour of integration. This ensures that
integrals in eqns (AI)-(A4) are bounded and consist of waves which are out-going.

The following are expressions for displacements corresponding to distributed tractions acting on shaft or
base elements (see Fig. 3).

Uniform traction in the z-direction acting on a shaft element

!"(rj,z.;rJ'Zj) = [rOO exRI(.;)F,(.;,z/,z')rPo(.;rMo(.;rJ)d.;I'··j,
Jo '·'JI

!"(rl' Zj; rJ,Zj) = [1'" exIJR I(';)F6(';'Z/, z')rj<:'J1(';r/)Jo(';rJ) d.;I' .'''.
o -·')1

Uniform traction in the r-direction acting on a shaft element

!"(rj'Zi;rj'ZJ) = [100 exIJRI(.;)F7(.;,z/Oz')rJ';2Jo(.;rMI(.;rJ)d.;I'··j,
o '-Ill

!"(r/, Zj;rJ,zJ) = [rOO IJR,(';)FI(.;,z/Oz')rp,(.;rM,(.;rJ)d.;I'··".
Jo -·'}I

Uniform traction in the z-direction acting on a base element

!"(ri,z/;rJ,zJ) =[t·, exR,(';)F'(';'Z/oZJ)sJol.;rMt(';S)d.;I'··j,Jo '-SJl

!"(rj,z.;rJ,zj) = rroo exPRI(.;)F2(.;,Zj.ZJ)s.;Jt(.;rM,(.;s)d.;I·.··j'.
Uo -')I

Linearly varying traction in the r-direction along a base element

!"(r/.z.;rJ,zJ) = [rOO exIJR,(';)F3(,;,z/,ZJ)s';Jo(.;rMl(.;s)d.;I:··j,1 ·~l

!"(r.,Zj;rJ.Zj) = [1'" IJR t(';)F.(';, Zj. ZJ)s';J 1(';r/)J2(';S) d.;I::·j,.
o ~1

(AB)

(AI4)

(AI5)

(AI6)

(AI7)

(AI8)

(AI9)

(A20)

The functions F" F6, F" and F1 and the limits Zjl' Zj" SJI and SJ2 appearing above are defined as

exPF,(';.z,z') = _4cxP';2(2';2 - k;XPQI + exQ2) + exR(';)e5(<:'Q3 -IJ'Q.) + exR(';)(P1Q, + .;2Q6) (A21)
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Fig. AI. Contour for numerical integration.

I1.fJF6(~'Z,Z') = -4ot(2~2 - k;XeQ2 + fJ2Qli + R(~XfJQ, + fJ2Q6) - R(~XfJQ4 -I1.Q3) (A22)

I1.fJF7(~'Z,Z') = -4P(2~2 - k;X~2QI + 11.
2Q2) - R(~XfJQ, + I1.Q6) - R(~XfJQ4 - I1.Q3) (A23)

I1.fJF8(~'Z,Z') = _4otp~2(2~2 - k;XfJQ, + I1.Q2) + fJR(~)(5WQ4 - 11.2Q3) + fJR(~X~2Q, + 11.2Q6) (A24)

ZJI = zJ -1iz/2, ZJ2 = zJ + IizJ2

sjI = rJ - tlrJ2, SJ2 = rJ + tlrJ2.

(A25)

(A26)

The evaluation of /ll(r;.z,;r ,zJ) which consists of infinite integrals has to be done through a numerical
integration scheme. For ao > O,f!' are complex and the integrands are singular at points ~ = kl , k" and k, where
k, is the root of Rayleigh's equation. In our opinion, an efficient way to evaluate these integrals is to perform
the numerical integration along a contour taken in the first quadrant of a complex plane (~,,,) as shown in Fig.
AI.


